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Abstract-Consideration is given to the problem of heat conduction with a moving phase boundary in a 
fine-porous filled material with filler evaporation. In addition to the Stefan condition, another condition 
is formulated at the phase boundary, since the temperature at the phase interface is the unknown function 
of time. This condition for the rate of evaporation takes into account different modes of the efflux of 
vapours from capillaries. It is shown that a correct account for the evaporation condition is reflected in 
the surface temperature, evaporation front temperature, phase change rate and in the amount of energy 

absorbed for evaporation. 

ONE OF the varieties of porous cooling is the so- 
called self-cooling. Porous materials operating on this 
principle find application in devices for which one of 
the conditions of service is their high resistance to 
erosion [l, 21. For example, filling or impregnating 
porous tungsten with another material, which evap- 
orates at fairly low temperatures [2], it is possible to 
attain a reduction in the temperature of a surface 
exposed to heating. We will consider the case of purely 
radiative heating of a porous body. 

With extension of the evaporation front into the 
body the effect of resistance to the motion of vapours 
through the porous matrix on the evaporation rate 
increases. To mathematically formulate the problem 
of heat and mass transfer with a mobile evaporation 
boundary inside of a porous medium it is necessary, in 
addition to the Stefan condition, to prescribe another 
relation, because the temperature at the phase inter- 
phase is not a constant which is known a priori. In 
the case of evaporation from an open surface this 
additional condition is generally obtained from the 
Hertz-Knudsen-type formula for the evaporation 
mass velocity 

MP, -P) 

G = (2--a)J(2xRT,/M)’ 

For evaporation into vacuum (and for c( = 1) this 
expression takes the form 

G= 
J(2Zi;,,M). 

(1) 

Note that a rigorous solution of a corresponding kin- 
etic problem (e.g. ref. [3]) shows that the maximum 
flow rate, which corresponds to equation (I), is not 
achieved in a steady-state case, because a portion of 
escaping molecules (about 18%20%) returns to the 
surface by way of collisions even in the case of evap- 

oration into vacuum. However, pursuing here the 
objective of a qualitative investigation into the effect 
of evaporation front depression on heat transfer in a 
porous body, we will adopt the closure condition in 
the form of equation (1) for the initial period of evap- 
oration when the front of phase change virtually 
coincides with the body surface. 

In order to take into account the resistance to va- 
pour flow with a further recession of the evaporation 
front, it is necessary to specify the model of a porous 
body. We will consider the simplest model of a porous 
body consisting of a set of cylindrical capillaries of 
the same radius. The study of the kinetics of mass 
transfer in a separate capillary for small-rate processes 
was carried out earlier [4, 51. In the case of a high-rate 
evaporation into vacuum there is no rigorous solution 
of this problem for all Knudsen numbers. Only for a 
free-molecular regime of vapour escape from an L- 
long capillary of radius r it is possible to write the 
expression [4, 51 

G= 
&2rrRT,q; + L/24)’ 

(2) 

However, with an increase of p,(T,) and a deep 
enough recession of the evaporation surface there may 
take place change in the vapour escape regime along 
the length of the capillary : the regime of a continuous 
medium in the region adjacent to the evaporation 
surface and the free-molecular regime near the exit 
from the capillary. We will assume that the transition 
from the free-molecular flow to the continuous 
medium flow occurs at the point with Kn = 1 
(the section where 0.1 < Kn < 10 is not considered). 
Vapour pressure at this point can be found from 
the equality of vapour flow rates in both flow regions. 
For a viscous compressible gas flow in a cylindrical 
channel [6] 

G = @‘~-pi3r* 
16pRF(L-L,) 
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NOMENCLATURE 

ffS specific heat of filler evaporation TCI temperature at the point x = L, 

Jo density of absorbed radiation flux T*(t) temperature on evaporation surface. 
L coordinate of the point of change in flow 

regimes Greek symbols 
A4 molecular weight WI coefficient of evaporation 

PO pressure at the point x = Lo QO initial temperature 

P* saturated vapour pressure at temperature PS filler density 

T* Ic, porosity. 

and in the section with free-molecular escape into 
vacuum 

’ = &nRTo;~ + Lo,%)) 
(4) 

where 

1 L 
i;=--- 

s L-Lo 0 
Tdx 

and p is the coefficient of viscosity. Using equations 
(3) and (4) and the condition Kn(Lo) = 1, it is possible 
to determine Lo and po. 

The said joining procedure and the description of 
flow in a capillary are approximate and are employed 
because of the absence of a rigorous solution for a 
respective kinetic problem. With such an approach, 
the presence of the initial period in the escape of 
vapours in a free-molecular regime is supposed (for 
the evaporation front in this regime to be extended 

into the body to a depth of a few diameters, i.e. 
0 < Lo < L). But if the radii of capillaries are great 
and the evaporation from an open surface passes over, 
with front recession into vapour escape in the con- 
tinuous medium regime, another procedure for the 
approximate calculation of flow is needed. 

Since in the present problem a fine-porous material 
is considered in which the diameter of capillaries is, 
in particular, smaller than the radiation wavelength, 
then the effects associated with radiation penetration 
into the pores can be ignored, i.e. a mobile radiation 
flux is virtually absorbed by the surface. The screening 
of radiation by escaping vapours and convective 
cooling of the porous layer are also disregarded, since 
the objective of the work is the evaluation of the 
effect of resistance to the escape of vapours on the 
evaporation rate and the body surface temperature, 
rather than calculation of a particular system of 
cooling. 

With regard for the above assumptions, the 
mathematical model represents two heat conduction 
equations for a desiccated (0 < x < L) and a filled 
(L < x < L,) layer of porous material with a mobile 
boundary between these regions (Fig. 1) 

aT, a’T, 
CpiPi at = 4 ~ aX2, i=1,2 (9 

where subscripts 1,2 relate respectively to the des- 
iccated and filled regions. The quantities cph pi, li are 
the specific heat, density and thermal conductivity of 

the respective layers. Calculations were carried out for 
tungsten-zinc material with the use of the following 
relations : 

The boundary and initial conditions are 

(6) 

__A !!!I! 
1 ax x=o 

= jO-as~ (7) 
X=0 

_$3 
ax x=L, = 

0 

TI Ix = L(O = Tzlx = L(r) = T,(t) 

(8) 

(9) 

__A !?5 
1 ax x=Lcrj 

+a*$ _ J_ L(r) = $P& $ (10) 

dL 1 
- = -G(T,,p,,L,Lo) 
dt PS 

(11) 
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ix 
FIG. 1. Geometric scheme of the problem. 
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FIG. 2. The graph of the evaporation front temperature T, vs 
time for three regimes of vapour escape at j,, = lo6 W me2 

(1, free ; 2, free-molecular ; 3, combined). 

T, (0, x) = T,(O, x) = 0,. (12) 

The Knudsen number was calculated from the 
formula 

Problem (5)-(12) was solved numerically by the finite- 
difference technique for j, = 106, lo8 W m-*, 
r = 0.5 x 10e6 m, $ = 0.6, L, = 0.06 m and for three 
expressions of G : equations (I), (2) and for a com- 
bined regime, equations (3) and (4). The regimes in 
which the region of free-molecular flow is absent 
(L, = 0) were not attained for the values of the par- 
ameters used. The model considered postulates a one- 
phase version of region 2. The volume occupied by a 
liquid phase can be determined approximately from 
the isotherm of melting. 

Figures 2 and 3 present the temperatures at evap- 
oration fronts T.+ vs time for three regimes of vapour 
escape from a body exposed to radiation fluxes 
j, = lo6 and lo8 W m-‘, respectively. Only with the 
use of the condition of evaporation from an open 
surface (1), i.e. without regard for the resistance to 
the escape of vapours, the temperature T* attains a 

1000 

300 

FIG. 3. Same as Fig. 2 but at j, = 10’ W mm’. FIG. 5. Same as Fig. 4 but at j,, = lOa W m-2, 

FIG. 4. The graph of evaporation front velocity vs time for 
three regimes of vapour escape at j,, = lo6 W rn-> (1, free; 

2, free-molecular ; 3, combined). 

certain, almost constant, value which depends on the 
density of absorbed radiation flux (forj, = 10’ W mm2 
the temperature T* slowly decreases starting from a 
certain time instant). In this case, the value of T.+ does 
not coincide, of course, with the temperature of quasi- 
steady-state evaporation of zinc exposed to the same 
flux in vacuum because of the formation of a des- 
iccated layer in the porous body. Taking into account 
the resistance to the escape of vapours by the free- 
molecular flow model, equation (2) substantially over- 
estimates T, and, although there is a tendency to 
approach the asymptotic value [7], it is not attained 
in real conditions. The curves that correspond to the 
case allowing for the resistance to vapour motion in 
the combined regime of vapour escape (the presence 
of transition from a free-molecular to a viscous regime 
in the capillary) lie, starting from a certain time 
instant, between the temperature curves obtained for 
the two other evaporation regimes. In this case there is 
a more distinct tendency to attain a certain asymptotic 
value. 

Figures 4 and 5 present the curves of the evap- 
oration front velocity vs time calculated from the same 
models of escape. The use of the condition of evap- 
oration from a free surface for fine-porous bodies 
appreciably overestimates the evaporation rate. For 

1.0 r 
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free-molecular and combined regimes the results vir- 
tually coincide during a certain initial period (which 
depends on j,, and r), and then the use of equation (2) 
overestimates the actual resistance and, cor- 
respondingly, underestimates the evaporation rate. 

The data listed in Table 1 characterize the energy 
expended for phase transformations. E,(t) is the 
energy absorbed by evaporation by the time instant t 
and related to the full energy j,t in the case of the use 
of condition (1) ; q(t) is the instantaneous value of 
this quantity (ratio of powers), i.e. 

Analogous quantities for free-molecular escape and 
for a combined regime are designated as E,, e2 and E,, 

e3, respectively. These data for the energies confirm 
the importance of taking into account the resistance 
to motion of vapours in capillaries. For example, for 
j0 = 10’ W mm2 and t = 0.2 s the model without taking 
into account the resistance gives 51% of energy 
absorbed by evaporation (E,), and the models that 
take into account the resistance-only 19% (I&) and 
32% (E3). 

The surface temperature T, of the material is first 
lower, because of the energy loss for phase change, 
than for an analogous specimen made of solid 
tungsten. But, in contrast to ref. [2], concerned with 
convective heating of an identical porous material, a 
reduction of T, is of temporal character. Moreover, 
starting from some time instant the T, of a desiccated 
layer becomes higher than for solid tungsten. The 
duration and degree of cooling depend on such 
characteristics of the material as porosity, specific heat 
of evaporation, radius of capillaries and also on the 
radiation flux density. 

Figure 6 shows the dependencies of Ej and TW on 
the porosity of a specimen for the model of a com- 
bined regime of vapour escape after 60 s of exposure 
to the flux j, = 5 x lo6 W m-*. Note that the function 
T.&I) has a minimum. And although taking into 
account the convective cooling of a porous layer by 
vapours would have somewhat changed the form of 

I I 

0.1 0.3 0.5 w 07 

FIG. 6. Dependence of the body surface temperature TW and 
energy E3 on the specimen porosity in the combined regime 

of vapour escape (j, = 5 x IO6 W m- * ; t = 60 s). 

the curve T&I), the presence of two competing 
processes+ooling due to the phase change and 
increase of TW due to a decrease of the thermal con- 
ductivity coefficient with an increase of porosity- 
retains the validity of the problem of finding the opti- 
mum porosity. 
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Table 1. Dependence of the energy expended for filler evaporation on time for three regimes of 
vapour escape (j, = 10’ W m-‘) 

1o-2 2.3 x 10m2 4.1 X 1o-3 1.6 x 1O-2 3.1 x 10-3 1.6 x 1O-2 3.1 x 1om3 
2 x lo-* 0.23 6.3 x 1O-2 6.2 x 1O-2 2.2 x 10-Z 6.8 x lo-* 2.4 x lo-* 
4 x 10-Z 0.47 0.22 0.13 6.2 x lo-* 0.15 7.2 x lo-* 
6 x lo-* 0.56 0.32 0.17 9.3 x lo-* 0.32 0.12 
8 x 1O-2 0.59 0.38 0.20 0.12 0.35 0.17 

10-l 0.60 0.43 0.22 0.14 0.39 0.21 
2 x10-l 0.58 0.51 0.25 0.19 0.44 0.32 
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CHAUFFAGE RADIATIF D’UN MATERIAU FINEMENT POREUX 

R&sum&-On considtre le probltme de la conduction thermique avec front&e de phase mobile dans un 
materiau finement poreux et evaporation d’une charge. A la condition de Stefan est ajoutee une autre 
condition a l’interface car la temperature y est une fonction inconnue du temps. Cette condition pour 
l’ivaporation tient compte de differents modes de progression des vapeurs dans les capillaires. On montre 
qu’une prise en compte correcte de la condition d’evaporation se repercute sur la temperature de surface, 
la temperature du front d’evaporation, la vitesse de changement de phase et la quantite d’energie absorb&e 

par I’tvaporation. 

BEHEIZUNG EINES VERFULLTEN FEINPORIGEN MATERIALS DURCH 
STRAHLUNG 

Znsammenfassung-Es wird das Problem der Wlrmeleitung mit wandemder Phasengrenze in einem ver- 
fiillten feinporigen Material mit Verdampfung der Fullmasse betrachtet. Zusatzlich zur Stefan-Bedingung 
wird eine weitere Bedingung an der Phasengrenze formuliert, da die Temperatur an der Phasengrenze eine 
unbekannte Funktion der Zeit ist. Diese Bedingung fur die Verdampfungsgeschwindigkeit beriicksichtigt 
verschiedene Arten der Dampfabstriimung aus den Kapillaren. Eine korrekte Berticksichtigung der Ver- 
dampfungsbedingung wirkt sich auf die Oberfllchentemperatur, die Temperatur der Verdampfungsfront, 
die Phasenanderungsgeschwindigkeit und auf den Betrag der fur die Verdampfung absorbierten Energie 

aus. 

PAJ@iAIQiOHHbIfi HAI’PEB MEJIKOl-IOPkiCTOl-0 MATEPHAJIA C HAl-IOJIHMTEnEM 

Atmnra~PaccMarpHrrae-rcn sanitya ren.nonpoeowocrH c nsHHcymeiica rpaHHnei rJa3onor.o nepe- 
xona B MenKonopHcrot4 h4arepHane npH HcnapeHHH HanonHHTenn. Ha rpaHHne @30noro nepexona 
nohrHM0 ycnos~n Cre$iaHa +ophfynHpyercn eme OKHO ycnoeae, raK KaK TeMneparypa Ha rpaHHne 
pa3KeHa I+3 HBJIHeTCK HeH38eCTHOii I$yHKIrHefi BpeMeHH. 3TO ycJlOBHe HJlff CKOpoc’rH HCllapeHHK Orpa- 
lgaer pa3nHHHbre peac~hrbi HcreKeHHn napon 83 Kanannnpos. lToKa3aH0, Hro npaewbHbrH yHer ycnomifi 
HcnapeHHI cKa3bmaercK Ha 3HaHeHHnx rehtneparypbi nosepxHocrH, rehmeparypbi @poHra HcnapeHHK, 

cKopocrH@asonoro nepexona HHenHmiHe3HeprHH,nornomeHHotiHcnapeHHehf. 


